Turing 1.0

About the Program

This program was conceived several years ago when I sat through the
drudgery of tracing by hand the paths of a Turing machine to check my homework
and I realized that this was an ideal job for a program. Therefore, this program is
dedicated to and aimed towards higher education computer science curricula.

Introduction to Turing Machines

A Turing machine is a simple model of a general-purpose computer which
can read inputs, perform certain operations and write outputs. A Turing machine
can perform any computation that any other general-purpose can, and is therefore
useful for study in academic computer science curricula.

Turing machines (usually) consist of a tape upon which characters are read
and written, and a set of states that define the actions of the machine. A Turing
machine may read a character from the tape, write a character to the tape, move the
"read/write" head left or right (or leave it where it is) and move to another state.

For example, given a tape with several slashes on it, a space (or several)
after the slashes, and the read/write head (represented by the arrow) pointing to the

first slash,
e

IR ER IRt

we can replace the slashes with asterisks by using the Turing machine state
table

space g ; g *

This table represents the actions of the Turing machine.

Each cell in the table may consist of up to three parameters, each of
which is optional. The first character is what gets written to the tape. The
second character is either "L" or "R", to move the tape read/write head left or
right. The final parameter is the number of the next state to be executed.

If the current state in this example is state number 1 (following the
numbering down the left side of the table), then when a slash is under the
read/write head, the active cell is the one containing "*R". Therefore, an
asterisk is written (overwriting the slash), and the tape head is moved right.



Since there is no third parameter, the next state to be executed is the

current state, number 1. The tape then looks like this:
oL

AIATRIRTETaTE

On the next execution cycle, the current state is number 1 and the
character under the tape head is a slash, so the same instruction is
executed. This overwrites each slash with an asterisk until the last slash has
been overwritten, at which time the tape head is over a space. Since there is
no instruction defined for the space character in state 1, the Turing machine
halts. At completion, this is the tape:

-l

LR BB R R RS

Using Turing 1.0

Turing is fairly straightforward and simple to use. The interface consists
mainly of two windows, one containing the Turing machine's tape and the other
window containing the state table.

The Tape
The tape window looks something like this:

Although some Turing machine models use a two-way infinite tape, the tape
model used in Turing 1.0 is finite in both directions. The scroll bar scrolls the
tape left or right. The rectangle above the scroll bar contains the tape and is
divided into 1-character blocks. The arrow above the tape represents the
current position of the read/write head. The inverted character block
indicates the current character that will be replaced if something is typed.

Editing the tape

Typing a character replaces the character in the inverted block, and
moves the inverted block to the right. In this way tapes can be set up before
running a Turing machine. Clicking inside the tape rectangle moves the
inverted block to that location. Clicking inside the dotted rectangle moves
the read/write head to that location.



The State Table
The state window looks approximately like this:

Docs Example 1 States
A D B T

hwm-ﬂﬁf
[in]
—
(w1
L]
[au]

B

| R

|

The column down the left side of the table numbers the states. The current
state's number is in outline form. Across the top of the table is the
machine's alphabet. The scroll bars scroll the state cells; the horizontal scroll
bar reveals more of the alphabet and the vertical scroll bar reveals more of
the state numbers.

Moving Around in and Editing the State Table

Clicking on the large arrow in the upper left of the table puts the first
state and the first character in the alphabet into the upper-left of the
window; this is the same as using the scrollbars to scroll to the top-left of the
table. Transition instructions (such as "*R") can be entered into the table by
clicking on the appropriate cell and then typing. Typing the Tab key moves
the cursor to the next cell in the row; typing the Return key moves to the
next cell in the column. The alphabet for the table may be modified by
clicking on the character to be changed, and then typing the new character.
Clicking on a state number makes it the current state. A breakpoint may be
set for a state by holding down the option key (the cursor changes to a small
stop sign) and then clicking on the state number. States that have
breakpoints attached to them have their numbers displayed in italics.



The Control Menu

Ligar Breakoninis

Parse #P
Step #T
Continue #h
Run #R

This menu is used to parse and execute the Turing machine. The first
item, "Clear Breakpoints", is used to clear any breakpoints (hence the name)
that have been set for the machine. "Parse" performs a check on the
syntactic correctness of the state transitions. This is automatically done
before running. "Step" executes the current transition and then halts.
“Continue" causes execution to begin at the current transition and continue
until either the mouse button is clicked or a halt state (no transition defined)
is entered. "Run" makes state 1 the current state, and begins executing until
the mouse is clicked or a halt state is entered.

Afterword

While these instructions detail the parts of the program, more can be
learned through the use of Turing. Therefore, several sample machines have
been included. "Back and Forth" simply causes the read/write head to seek
back and forth between ends of the characters written on the tape. The "AB
Sort" file contains a machine which will sort a set of a's and b's written on
the tape (with no spaces between them). "Docs Example" contains the
example used at the beginning of this document.

Plea

If you use this program, please support the shareware ideal and send
in your fee. Site licenses are available to institutions of higher education at
significant discounts!

Please email any bug reports and enhancement suggestions to one of the
addresses below.

Lee Fyock
laf@mitre.org Internet
Fyock America Online



